Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1368685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510250

RESUMO

Background: Glioblastoma (GBM), with its high recurrence and mortality rates, makes it the deadliest neurological malignancy. Oxidative phosphorylation is a highly active cellular pathway in GBM, and NFYB is a tumor-associated transcription factor. Both are related to mitochondrial function, but studies on their relationship with GBM at the single-cell level are still scarce. Methods: We re-analyzed the single-cell profiles of GBM from patients with different subtypes by single-cell transcriptomic analysis and further subdivided the large population of Glioma cells into different subpopulations, explored the interrelationships and active pathways among cell stages and clinical subtypes of the populations, and investigated the relationship between the transcription factor NFYB of the key subpopulations and GBM, searching for the prognostic genes of GBM related to NFYB, and verified by experiments. Results: Glioma cells and their C5 subpopulation had the highest percentage of G2M staging and rGBM, which we hypothesized might be related to the higher dividing and proliferating ability of both Glioma and C5 subpopulations. Oxidative phosphorylation pathway activity is elevated in both the Glioma and C5 subgroup, and NFYB is a key transcription factor for the C5 subgroup, suggesting its possible involvement in GBM proliferation and recurrence, and its close association with mitochondrial function. We also identified 13 prognostic genes associated with NFYB, of which MEM60 may cause GBM patients to have a poor prognosis by promoting GBM proliferation and drug resistance. Knockdown of the NFYB was found to contribute to the inhibition of proliferation, invasion, and migration of GBM cells. Conclusion: These findings help to elucidate the key mechanisms of mitochondrial function in GBM progression and recurrence, and to establish a new prognostic model and therapeutic target based on NFYB.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Fosforilação Oxidativa , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Fator de Ligação a CCAAT/metabolismo
2.
Environ Toxicol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38476113

RESUMO

This study investigates Astragalus's efficacy as a novel therapeutic option for primary liver cancer (PLC), capitalizing on its anti-inflammatory and antiviral effects. We utilized network pharmacology to unveil Astragalus's potential targets against PLC, revealing significant gene expression alterations in treated samples-20 genes were up-regulated, and 20 were down-regulated compared to controls. Our analysis extended to single-cell resolution, where we processed scRNA-seq data to discern 15 unique cell clusters within the immune, malignant, and stromal compartments through advanced algorithms like UMAP and tSNE. To delve deeper into the functional implications of these gene expression changes, we conducted comprehensive gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, alongside Gene Set Variation Analysis, to elucidate the biological processes and pathways involved. Further, we constructed protein-protein interaction networks to visualize the intricate molecular interplay, highlighting the down-regulation of MT1E in PLC cells, a finding corroborated by quantitative polymerase chain reaction. Molecular docking studies affirmed the potent interaction between Astragalus's active compounds and MT proteins, underscoring a targeted therapeutic mechanism. Our investigation also encompassed a detailed cellular landscape analysis, identifying nine cell subgroups related to MT1 expression and specifying five cell subsets through the SingleR package. Advanced trajectory and cell-cell interaction analyses offered deeper insights into the dynamics of MT1-associated cellular subpopulations. This comprehensive methodology not only underpins Astragalus's promising role in PLC treatment but also advances our understanding of its molecular and cellular mechanisms, paving the way for targeted therapeutic strategies.

3.
Biotechnol Genet Eng Rev ; : 1-22, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37066895

RESUMO

Leonurus japonicus Houtt is an important anti-skin pigmentation herb used in traditional Chinese medicine. However, the molecular basis for this activity is complex and not fully understood. In this study, water and ethanol extracts and polysaccharide extract from L. japonicus (LJPs) were analyzed by LC-MS/MS and HPLC-DAD separately. Cytotoxicity was analyzed by using CCK-8, antioxidant activity using flow cytometer, anti-MMPs, anti-tyrosinase and signalling pathway analysis using Western blotting to investigate their anti-melanogenesis function. The results showed that the water and ethanol extracts contained alkaloids, flavonoids, and phenolic acids. The LJPs mainly contain glucose, fucose, glucuronic acid, mannose, threonine and arginine, and structure characterization by FITR analyses indicated that LJPs have ß- or α-D-glycosidic bonds and contain pyranose rings. The L. japonicus extracts displayed high cell viability at their maximum concentration. The water extract and polysaccharides significantly reduced lipopolysaccharide (LPS)-induced intracellular reactive oxygen species (ROS) content and exhibited a cytoprotective role. Also, these extracts displayed higher matrix metalloproteinase-2 (anti-MMP-2), anti-MMP-9 and anti-tyrosinase activities. Furthermore, the polysaccharides displayed significantly greater inhibitory effect on intracellular ROS and tyrosinase protein expression than α-arbutin and ursolic acid used for the clinical treatment of skin pigmentation. This study also investigated the polysaccharide inhibition of melanin synthesis by repressing the expression of melanocytic lineage-specific transcription factor (MITF) and melanogenic enzymes via modulation of the phosphoinositide 3-kinase (PI3K-Akt-mTOR) and ß-catenin pathways. The overall results indicate that L. japonicus is a promising candidate for anti-pigmentation treatment.

4.
J Biol Chem ; 299(2): 102887, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36626982

RESUMO

The O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) mediates intracellular O-GlcNAcylation modification. O-GlcNAcylation occurs on Ser/Thr residues and is important for numerous physiological processes. OGT is essential for dividing mammalian cells and is involved in many human diseases; however, many of its fundamental substrates during cell division remain unknown. Here, we focus on the effect of OGT on polo-like kinase 1 (PLK1), a mitotic master kinase that governs DNA replication, mitotic entry, chromosome segregation, and mitotic exit. We show that PLK1 interacts with OGT and is O-GlcNAcylated. By utilizing stepped collisional energy/higher-energy collisional dissociation mass spectrometry, we found a peptide fragment of PLK1 that is modified by O-GlcNAc. Further mutation analysis of PLK1 shows that the T291A mutant decreases O-GlcNAcylation. Interestingly, T291N is a uterine carcinoma mutant in The Cancer Genome Atlas. Our biochemical assays demonstrate that T291A and T291N both increase PLK1 stability. Using stable H2B-GFP cells, we found that PLK1-T291A and PLK1-T291N mutants display chromosome segregation defects and result in misaligned and lagging chromosomes. In mouse xenograft models, we demonstrate that the O-GlcNAc-deficient PLK1-T291A and PLK1-T291N mutants enhance uterine carcinoma in animals. Hence, we propose that OGT partially exerts its mitotic function through O-GlcNAcylation of PLK1, which might be one mechanism by which elevated levels of O-GlcNAc promote tumorigenesis.


Assuntos
Divisão Celular , Proteínas Serina-Treonina Quinases , Neoplasias Uterinas , Animais , Feminino , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Neoplasias Uterinas/enzimologia , Neoplasias Uterinas/genética , Acilação , Divisão Celular/fisiologia , Mutação , Quinase 1 Polo-Like
5.
Front Pharmacol ; 13: 1015240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532744

RESUMO

Objective: Studies of the effects of dehydroabietic acid on the multiomics of HepG2 hepatoma carcinoma cells are currently lacking. In this study, the molecular mechanism of the influence of dehydroabietic acid on HepG2 cells was disclosed by studying lipidomics and proteomics. Correlations among multiomics conjoint analysis results were verified. Methods: First, proteomics analysis of HepG2 cells was carried out using dehydroabietic acid. Differentially expressed proteins were screened and analyzed. Pathway enrichment analyses of differential proteins were compared, and the molecular mechanism was disclosed. Second, lipidomics analysis of HepG2 cells was conducted using dehydroabietic acid. The influence of dehydroabietic acid on HepG2 cells was determined on the lipid molecular level. Finally, a conjoint analysis of data related to differentially expressed proteins of ferroptosis and differentially changing lipid molecules was implemented. Results: A total of 260 upregulated and 961 downregulated proteins were screened in the proteomics analysis. The top five significantly enriched pathways included ferroptosis, oxidative phosphorylation, and protein processing in the endoplasmic reticulum. In the lipidomics analysis, 30 significantly differential metabolites with upregulated and downregulated expression were identified, and differentially expressed lipids were mainly related to the metabolism of glyceryl phosphatide. According to the comprehensive multiomics analysis results, real-time quantitative PCR and the enzyme-linked immunosorbent assay (ELISA), ACSL3 participated in cardiolipin metabolism. Conclusion: Dehydroabietic acid influences HepG2 cells through the above biological pathways.

6.
Front Oncol ; 12: 916777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903696

RESUMO

Background: Nitrogen metabolism (NM) plays a pivotal role in immune regulation and the occurrence and development of cancers. The aim of this study was to construct a prognostic model and nomogram using NM-related genes for the evaluation of patients with lung adenocarcinoma (LUAD). Methods: The differentially expressed genes (DEGs) related to NM were acquired from The Cancer Genome Atlas (TCGA) database. Consistent clustering analysis was used to divide them into different modules, and differentially expressed genes and survival analysis were performed. The survival information of patients was combined with the expressing levels of NM-related genes that extracted from TCGA and Gene Expression Omnibus (GEO) databases. Subsequently, univariate Cox analysis and the least absolute shrinkage and selection operator (LASSO) regression were used to build a prognostic model. GO and KEGG analysis were elaborated in relation with the mechanisms of NM disorder (NMD). Meanwhile, immune cells and immune functions related to NMD were discussed. A nomogram was built according to the univariate and multivariate Cox analysis to identify independent risk factors. Finally, real-time fluorescent quantitative PCR (RT-PCR) and Western bolt (WB) were used to verify the expression level of hub genes. Results: There were 138 differential NM-related genes that were divided into two gene modules. Sixteen NM-related genes were used to build a prognostic model and the receiver operating characteristic curve (ROC) showed that the efficiency was reliable. GO and KEGG analysis suggested that NMD accelerated development of LUAD through the Wnt signaling pathway. The level of activated dendritic cells (aDCs) and type II interferon response in the low-risk group was higher than that of the high-risk group. A nomogram was constructed based on ABCC2, HMGA2, and TN stages, which was identified as four independent risk factors. Finally, RT-PCR and WB showed that CDH17, IGF2BP1, IGFBP1, ABCC2, and HMGA2 were differently expressed between human lung fibroblast (HLF) cells and cancer cells. Conclusions: High NM levels were revealed as a poor prognosis of LUAD. NMD regulates immune system through affecting aDCs and type II interferon response. The prognostic model with NM-related genes could be used to effectively evaluate the outcomes of patients.

7.
J Biol Chem ; 295(21): 7341-7349, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32295844

RESUMO

The role of O-linked N-acetylglucosamine (O-GlcNAc) modification in the cell cycle has been enigmatic. Previously, both O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) disruptions have been shown to derail the mitotic centrosome numbers, suggesting that mitotic O-GlcNAc oscillation needs to be in concert with mitotic progression to account for centrosome integrity. Here, using both chemical approaches and biological assays with HeLa cells, we attempted to address the underlying molecular mechanism and observed that incubation of the cells with the OGA inhibitor Thiamet-G strikingly elevates centrosomal distances, suggestive of premature centrosome disjunction. These aberrations could be overcome by inhibiting Polo-like kinase 1 (PLK1), a mitotic master kinase. PLK1 inactivation is modulated by the myosin phosphatase targeting subunit 1 (MYPT1)-protein phosphatase 1cß (PP1cß) complex. Interestingly, MYPT1 has been shown to be abundantly O-GlcNAcylated, and the modified residues have been detected in a recent O-GlcNAc-profiling screen utilizing chemoenzymatic labeling and bioorthogonal conjugation. We demonstrate here that MYPT1 is O-GlcNAcylated at Thr-577, Ser-585, Ser-589, and Ser-601, which antagonizes CDK1-dependent phosphorylation at Ser-473 and attenuates the association between MYPT1 and PLK1, thereby promoting PLK1 activity. We conclude that under high O-GlcNAc levels, PLK1 is untimely activated, conducive to inopportune centrosome separation and disruption of the cell cycle. We propose that too much O-GlcNAc is equally deleterious as too little O-GlcNAc, and a fine balance between the OGT/OGA duo is indispensable for successful mitotic divisions.


Assuntos
Centrossomo/metabolismo , Mitose , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Glicosilação , Humanos , Fosfatase de Miosina-de-Cadeia-Leve/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Quinase 1 Polo-Like
8.
Cell Cycle ; 17(4): 421-427, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29262732

RESUMO

Polo-like kinase 1 (Plk1) is an instrumental kinase that modulates many aspects of the cell cycle. Previous investigations have indicated that Plk1 is a target of the DNA damage response, and Plk1 inhibition is dependent on ATM/ATR and Chk1. But the exact mechanism remains elusive. In a proteomic screen to identify Chk1-interacting proteins, we found that myosin phosphatase targeting protein 1 (MYPT1) was present in the immunocomplex. MYPT1 is phosphorylated by CDK1, thus recruiting protein phosphatase 1ß (PP1cß) to dephosphorylate and inactivate Plk1. Here we identified that Chk1 directly interacts with MYPT1 and preferentially phosphorylates MYPT1 at Ser20, which is essential for MYPT1-PP1cß interaction and subsequent Plk1 dephosphorylation. Phosphorylation of Ser20 is abolished during mitotic damage when Chk1 is inhibited. The degradation of MYPT1 is also regulated by Chk1 phosphorylation. Our results thus unveil the underlying machinery that attenuates Plk1 activity during mitotic damage through Chk1-induced phosphorylation of MYPT1.


Assuntos
Proteína Quinase CDC2/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Proteína Fosfatase 1/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína Quinase CDC2/química , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitose , Fosfatase de Miosina-de-Cadeia-Leve/química , Fosfopeptídeos/análise , Fosforilação , Ligação Proteica , Proteína Fosfatase 1/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica , Proteínas Proto-Oncogênicas/metabolismo , Serina/metabolismo , Quinase 1 Polo-Like
9.
Nat Commun ; 8(1): 950, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038465

RESUMO

Damage-associated molecular patterns (DAMP) trigger innate immune response and exacerbate inflammation to combat infection and cellular damage. Identifying DAMPs and revealing their functions are thus of crucial importance. Here we report that two molecules, N-myc and STAT interactor (NMI) and interferon-induced protein 35 (IFP35) act as DAMPs and are released by activated macrophages during lipopolysaccharide-induced septic shock or acetaminophen-induced liver injury. We show that extracellular NMI and IFP35 activate macrophages to release proinflammatory cytokines by activating nuclear factor-κB through the Toll-like receptor 4 pathway. In addition, the serum levels of NMI are increased in patients who succumbed to severe inflammation. NMI deficiency reduces inflammatory responses and mortality in mouse models of sepsis and liver injury. We therefore propose that extracellular NMI and IFP35 exacerbate inflammation as DAMPs, making them potential therapeutic targets for clinical intervention.Damage-associated molecular patterns (DAMP) are important mediators of innate immunity. Here the authors show that N-myc and STAT interactor (NMI) and interferon-induced protein 35 (IFP35) act as DAMPs to promote inflammation by activating macrophages via the Toll-like receptor 4 and NF-κB pathways.


Assuntos
Alarminas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Macrófagos/imunologia , Choque Séptico/imunologia , Acetaminofen/toxicidade , Animais , Linhagem Celular , Citocinas/imunologia , Humanos , Inflamação , Infecções Intra-Abdominais/imunologia , Lipopolissacarídeos/toxicidade , Camundongos , NF-kappa B/imunologia , Choque Séptico/induzido quimicamente , Receptor 4 Toll-Like/imunologia
10.
Sci Rep ; 5: 8360, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25666058

RESUMO

Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurologic disorder caused by ATTCT expansion in the ATXN10 gene. Previous investigations have identified that depletion of Ataxin-10, the gene product, leads to cellular apoptosis and cytokinesis failure. Herein we identify the mitotic kinase Aurora B as an Ataxin-10 interacting partner. Aurora B interacts with and phosphorylates Ataxin-10 at S12, as evidenced by in vitro kinase and mass spectrometry analysis. Both endogenous and S12-phosphorylated Ataxin-10 localizes to the midbody during cytokinesis, and cytokinetic defects induced by inhibition of ATXN10 expression is not rescued by the S12A mutant. Inhibition of Aurora B or expression of the S12A mutant renders reduced interaction between Ataxin-10 and polo-like kinase 1 (Plk1), a kinase previously identified to regulate Ataxin-10 in cytokinesis. Taken together, we propose a model that Aurora B phosphorylates Ataxin-10 at S12 to promote the interaction between Ataxin-10 and Plk1 in cytokinesis. These findings identify an Aurora B-dependent mechanism that implicates Ataxin-10 in cytokinesis.


Assuntos
Ataxina-10/metabolismo , Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citocinese/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Substituição de Aminoácidos , Ataxina-10/genética , Aurora Quinase B/genética , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Mutação de Sentido Incorreto , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
11.
Biochem Biophys Res Commun ; 447(4): 702-6, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24769206

RESUMO

Methylenetetrahydrofolate reductase (MTHFR), a key enzyme in the folate cycle, catalyzes the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. Methionine serves as the precursor of the active methyl donor S-adenosylmethionine, which provides methyl groups for many biological methylations. It has been reported that MTHFR is highly phosphorylated under unperturbed conditions and T34 is the priming phosphorylation site. In this report, we generated a phospho-specific antibody that recognized T34-phosphorylated form of MTHFR and revealed that MTHFR was phosphorylated at T34 in vivo and this phosphorylation peaked during mitosis. We further demonstrated that the cyclin-dependent kinase 1 (CDK1)/Cyclin B1 complex is the kinase that mediates MTHFR phosphorylation at T34 and the MTHFR immunocomplex purified from mitotic cells exhibited lower enzymatic activity. Inhibition of MTHFR expression resulted in a decrease of H3K9me3 levels, and an increase of transcription of the centromeric heterochromatin markers. Taken together, our results demonstrated that CDK1/Cyclin B1 phosphorylates MTHFR on T34 and MTHFR plays a role in the heterochromatin maintenance at the centromeric region.


Assuntos
Heterocromatina/genética , Heterocromatina/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Especificidade de Anticorpos , Sítios de Ligação , Proteína Quinase CDC2/metabolismo , Linhagem Celular , Centrômero/genética , Centrômero/metabolismo , Ciclina B1/metabolismo , Instabilidade Genômica , Células HEK293 , Células HT29 , Células HeLa , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/química , Metilenotetra-Hidrofolato Redutase (NADPH2)/imunologia , Mitose/fisiologia , Fosforilação
12.
Eur J Med Chem ; 64: 401-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23665106

RESUMO

A novel series of 4-substituted-piperazine-1-carbodithioate derivatives of 2,4-diaminoquinazoline were synthesized and tested for their antiproliferative activities against five human cancer cell lines including A549 (lung cancer), MCF-7 (breast adenocarcinoma), HeLa (cervical carcinoma), HT29 and HCT-116 (colorectal cancer). Most of the synthesized compounds showed broad spectrum antiproliferative activity (IC50 1.47-11.83 µM), of which 8f, 8m and 8q were the most active members with IC50 values in the range of 1.58-2.27, 1.84-3.27 and 1.47-4.68 µM against five cancer cell lines examined, respectively. Further investigations revealed that compounds 8f, 8m and 8q exhibited weak inhibition against dihydrofolate reductase and no activity against thymidylate synthase, while induced DNA damage and activated the G2/M checkpoint in HCT-116 cells.


Assuntos
Antineoplásicos/farmacologia , Piperazinas/química , Quinazolinas/farmacologia , Tiocarbamatos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HCT116 , Células HT29 , Células HeLa , Humanos , Células MCF-7 , Estrutura Molecular , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade
13.
Chin J Cancer ; 31(8): 392-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22704488

RESUMO

DNA double-strand break (DSB) is the most severe form of DNA damage, which is repaired mainly through high-fidelity homologous recombination (HR) or error-prone non-homologous end joining (NHEJ). Defects in the DNA damage response lead to genomic instability and ultimately predispose organs to cancer. Nicotinamide phosphoribosyltransferase (Nampt), which is involved in nicotinamide adenine dinucleotide metabolism, is overexpressed in a variety of tumors. In this report, we found that Nampt physically associated with CtIP and DNA-PKcs/Ku80, which are key factors in HR and NHEJ, respectively. Depletion of Nampt by small interfering RNA (siRNA) led to defective NHEJ-mediated DSB repair and enhanced HR-mediated repair. Furthermore, the inhibition of Nampt expression promoted proliferation of cancer cells and normal human fibroblasts and decreased ß-galactosidase staining, indicating a delay in the onset of cellular senescence in normal human fibroblasts. Taken together, our results suggest that Nampt is a suppressor of HR-mediated DSB repair and an enhancer of NHEJ-mediated DSB repair, contributing to the acceleration of cellular senescence.


Assuntos
Senescência Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Nicotinamida Fosforribosiltransferase/metabolismo , Complexo Antígeno-Anticorpo/metabolismo , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Proliferação de Células , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases , Fibroblastos/citologia , Células HeLa , Recombinação Homóloga/genética , Recombinação Homóloga/fisiologia , Humanos , Autoantígeno Ku , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...